Notes on Lipschitz estimates for the stop and play operator in plasticity
نویسندگان
چکیده
منابع مشابه
Notes on Lipschitz estimates for the stop and play operator in plasticity
We present a generalisation of existing Lipschitz estimates for the stop and play operator for an arbitrary convex and closed characteristic, which contains the origin, in a separable Hilbert space. We are especially concerned with the dependence of stop and play on different scalar products.
متن کاملEstimates for the Stokes Operator in Lipschitz Domains
We study the Stokes operator A in a threedimensional Lipschitz domain Ω. Our main result asserts that the domain of A is contained in W 1,p 0 (Ω)∩W (Ω) for some p > 3. Certain L∞-estimates are also established. Our results may be used to improve the regularity of strong solutions of Navier-Stokes equations in nonsmooth domains. In the appendix we provide a simple proof of area integral estimate...
متن کاملthe search for the self in becketts theatre: waiting for godot and endgame
this thesis is based upon the works of samuel beckett. one of the greatest writers of contemporary literature. here, i have tried to focus on one of the main themes in becketts works: the search for the real "me" or the real self, which is not only a problem to be solved for beckett man but also for each of us. i have tried to show becketts techniques in approaching this unattainable goal, base...
15 صفحه اولLipschitz Estimates for Multilinear Commutator of Littlewood-paley Operator
Let T be the Calderón-Zygmund operator, Coifman, Rochberg and Weiss (see [4]) proves that the commutator [b, T ](f) = bT (f) − T (bf)(where b ∈ BMO(R)) is bounded on L(R) for 1 < p <∞. Chanillo (see [2]) proves a similar result when T is replaced by the fractional operators. In [8, 16], Janson and Paluszynski study these results for the Triebel-Lizorkin spaces and the case b ∈ Lipβ(R), where Li...
متن کاملOn the Lipschitz Operator Algebras
In a recent paper by H. X. Cao, J. H. Zhang and Z. B. Xu an α-Lipschitz operator from a compact metric space into a Banach space A is defined and characterized in a natural way in the sence that F : K → A is a α-Lipschitz operator if and only if for each σ ∈ X∗ the mapping σ ◦ F is a α-Lipschitz function. The Lipschitz operators algebras Lα(K,A) and lα(K,A) are developed here further, and we st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2009
ISSN: 0893-9659
DOI: 10.1016/j.aml.2008.07.004